# DAY 2

# PROGRESSION FOR STRENGTH: NEEDS ANALYSIS

- Specificity is contingent on the physiological objectives for time frame being examined.
  - Increases in strength are not a direct physiological adaptation but the ability to express multiple adaptations
  - What type(s) of adaptations are we biasing at a given moment within a periodized plan?

|                                   | Volume/Hypertrophy | Intensity/Neurological | Tapering/Max Strength expression |
|-----------------------------------|--------------------|------------------------|----------------------------------|
| Intensity of Load (% 1 RM)        | moderate           | moderate-high          | moderate-high                    |
| Avg Intensity of Effort (RPE/RIR) | ~1-3 RIR           | ~1-4 RIR               | ~1-5 RIR                         |
| Set Volume                        | highest            | moderate               | low                              |

#### PROGRESSION FOR STRENGTH: PROACTIVE STRATEGIES

- Preplanned increases in the absolute training stress
  - Usually via an increase in reps, load, sets, or combination
  - With strength goals, load progression is often the weapon of choice due to the benefits of higher intensities on strength outcomes.

#### Benefits

- Stimulus progression is inevitably occurring
- Can increase self awareness for performance capabilities/accuracy of RIR
  - Novices/anyone who has a tendency to "sandbag"
  - New exercises where proficiency can improve significantly session to session

#### Drawbacks

- Does not account for daily readiness
  - Recovery
  - Rate of adaptation
- Potential increased injury risk if athlete is inadequately adapted

#### PROGRESSION FOR STRENGTH: REACTIVE STRATEGIES

- Reactive strategies aim to "match" desired stimulus with individual's state of readiness (including rates of adaptation)
  - o Helps us to capitalize on when readiness is higher and scale back when readiness is lower.
  - o Generally still includes a planned "avenue" for progression (reps, load, etc)
    - magnitude of increase is generally autoregulated (often via RPE/RIR)

#### Benefits

- Accounts for daily readiness
- Often an easier diagnostic assessment of efficacy

#### Drawbacks

- Requires quite a bit of objectivity w/ capabilities for a given day.
  - This is especially true if only provided with a rep and RPE pairing (e.g. top set)

# REACTIVE PROGRESSION W/ FIXED LOAD INCREASES

- Can use regular load increases to promote strength adaptations, while still scaling overall stimulus with daily readiness.
  - Neural adaptations and skill acquisition
  - Confidence/familiarity moving progressively heavier loads
  - Load dependent connective tissue adaptations

| SETS                             | REPS                                                                             | LOAD                                                                         | EFFORT (RPE/RIR)                                                          |
|----------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Variable depending on goal/phase | Perform up to assigned<br>RPE/RIR or avg velocity stop<br>Ex: Reps up to 7-8 RPE | Preplanned increases/range for increase based on warmups Ex: +10 lbs/session | Can climb or remain static. Either way, it is predetermined. Ex: ~7-8 RPE |
|                                  |                                                                                  |                                                                              |                                                                           |
| Wk 1 Top set:                    | Wk 2<br>Top Set                                                                  | Wk 3<br>Top Set                                                              | Wk 4 Top Set                                                              |

# RPE/RIR Targets

#### HOW CAN TRAINING CLOSE TO FAILURE IMPACT THE TRAINING STIMULUS?

#### **Acutely (within a set)**

- ↑ Metabolic cost
- ↑ MU recruitment (in relation to the resistance)
- † perceived discomfort

## Residually (btwn sets & sessions)

- ↑ muscle damage (1)
- ↑ neuromuscular fatigue (1)
  - Peripheral
  - Central
- A reduced capacity for performance can limit ability to impose desired stimulus in subsequent sets/sessions.

Takeaway: We should train in a manner which aims to maximize the conceptual adaptation:stimulus ratio across a given timeframe.

1. Refalo, M. C., Helms, E. R., Hamilton, D. L. & Fyfe, J. J. Towards an improved understanding of proximity-to-failure in resistance training and its influence on skeletal muscle hypertrophy, neuromuscular fatigue, muscle damage, and perceived discomfort: A scoping review. *J Sports Sci* 1–23 (2022)

#### HOW DOES GOAL IMPACT THE MANAGEMENT OF RPE/RIR?

- RIR needs to be managed within the context of the other important variables for a goal.
  - Hypertrophy
    - Balanced combination of resistance, effort per set, and # sets
    - Given the loading is generally more moderate, proximity to failure should likely be within ~ 4 RIR on most sets.
  - Strength
    - Biased towards load, total force output per rep, and # sets
    - Heavier loading requires greater MU recruitment out of the gate, which means peripheral fatigue contributes less to that end
    - Maximizing force output per rep can benefit from training a bit further from failure (and potentially increasing sets)
      - As bar speed slows across a set, HTMUs may be producing more force, but TOTAL force output will be less when acceleration is less with a given load.
  - Metabolic
    - Can benefit from higher effort per set (lower RIR), higher reps, and increased density of sets (less rest between)

## **WORK CAPACITY:**

#### Definition and acute influential variables

- Defining work capacity
  - The ability to sustain/replicate force output for a given task over a given amount of time.
    - Within session
    - Session to session
  - O How well is performance maintained across sets?

- What can acutely impact work capacity within a session?
  - Rest intervals
  - Proximity to failure
    - The closer each set is to failure, the more fatiguing it will be, and generally the lower our ability to perform as well in subsequent sets.
  - Muscle glycogen levels
    - Degree of influence is going to be largely dependent on rep range

### **WORK CAPACITY:**

## How can a low work capacity negatively affect the stimulus?

- Fatigue between sets can lead to less mechanical tension in subsequent sets, despite similar "effective reps".
  - o Example:
    - Set 1: 100 lbs x 12 @ 2 RIR
    - Set 2: 90 lbs x 12 @ 2 RIR

## **WORK CAPACITY:**

### "Making the right read"

- If acute work capacity is high:
  - Progressing in effort is a good option
  - If progressing to lower RIRs results in more robust dropoff then consider option below:
- If acute work capacity is low(er):
  - We can to limit the drop-off in performance by scaling back RIR and making up that decrease in per set stimulus by adding sets.
  - May potentially also limit residual fatigue through reductions in muscle damage
  - Can then work your way back up using effort progressions

#### SHOULD SET PROGRESSION BE PRIORITIZED OVER LOAD/REP PROGRESSION?

- Some have proposed weekly set progression should be prioritized over load progression (%1RM).
  - Crux of argument for (1):
    - Dose response relationship has been shown between set volume and hypertrophy (2)
    - Similar hypertrophy can be observed across a wide spectrum of loading ranges (3)
    - Therefore, if load doesn't matter, and set volume does, should we focus more on set volume progression?
    - Claim that a reduction in reps and increases in load are likely suboptimal for hypertrophy (1).
    - As we adapt our Minimal effective stimulus and optimal stimulus increases and we therefore will benefit from increasing volume
  - Arguments against (4):
    - The research showing a dose response for volume is comparing two or more cohorts with different volume prescriptions across the same period of time. They are *not* examining the effects of volume increases *within that period of time*. To date, no study examining this actual question has been performed.
      - Absence of evidence is not evidence of absence.
    - Lack of evidence to support that reductions in reps and increases in load are increasingly fatiguing, or decreasingly stimulative (e.g, 10RM to 8 RM to 6 RM referenced).
    - Potential increase in injury risk
    - Diminishing rates of hypertrophy with additional sets

<sup>1.</sup> Israetel, M., Feather, J., Faleiro, T. V. & Juneau, C.-E. Mesocycle Progression in Hypertrophy: Volume Versus Intensity. Strength & Conditioning Journal Publish Ahead of Print, (2020).

Schoenfeld, B. J., Ogborn, D. & Krieger, J. W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci 35, 1073–1082 (2017)

<sup>3.</sup> Schoenfeld, B., Grgic, J., Ogborn, D. & Krieger, J. Strength and hypertrophy adaptations between low- versus high-load resistance training: A systematic review and meta-analysis. Journal of strength and conditioning research (2017)

<sup>4.</sup> Minor, B., Helms, E. & Schepis, J. RE: Mesocycle Progression in Hypertrophy: Volume Versus Intensity. Strength & Conditioning Journal Publish Ahead of Print, (2020)

## WHEN MAY AN ADDITION OF SETS WARRANTED?

• In situations of low acute work capacity (as discussed earlier)

- Is performance improving over time?
  - If YES, then we know we are likely operating at or above the stimulus threshold.
    - Stimulus threshold is influenced by degree or prior adaptations/capacity NOT acute prior performance
  - If NO, then first audit factors that influence recovery
    - Sleep
    - Energy balance
    - Protein intake
    - Stress
    - Training stimulus (are you perhaps doing too much?/need a deload?)
  - o If recovery is in check, then you may want to consider increasing set volume
- If you are feeling healthy, and know you are already operating below optimal set volume for a given movement, effort, rest intervals, etc.
  - Practical ways to assess this on the fly?